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Abstract 

A nonlinear algorithm has been suggested to increase the accuracy of evaluating the activa- 
tion energy by the integral isoconversional method. A minor modification of the algorithm has 
made it possible to adapt the isoconversional method for an arbitrary variation of the tempera- 
ture. This advanced isoconversional method allows for trustworthy estimates of the activation en- 
ergy when the thermal effect of a reaction makes the temperature of a sample deviate from a pre- 
scribed heating program. 

Keywords: activation energy, isoconversional method, non-isothermal kinetics, reaction kinet- 
ics in solids 

Introduction 

It is well known that force-fitting non-isothermal data to different reaction mod- 
els results in widely varying Arrhertius parameters. The only chance to obtain trust- 
worthy kinetic parameters is to extract them in a way that is independent of the re- 
action model. Isoconversional methods are known to allow for model-independent 
estimates of the activation energy, Ea, related to different extents of conversion, c~. 
Unfortunately these methods are not used very often which is probably because of 
the problems accompanying their application. For instance, E,  frequently reveals a 
dependence on ~ which poses a problem in interpreting the results of the computa- 
tions. Another problem is that the original isoconversional methods (e.g., Ozawa 
[1] and Flynn and Wall [2]) do not suggest a model-independent way to evaluate the 
preexponential factor. Determination of the reaction model is one more problem. 
Let us dwell briefly on these problems. The problem of the interpretation of the de- 
pendence of E~ on cx comes from the theoretical concepts which prescribe the acti- 
vation energy of an elementary reaction step to be constant. However thermal analy- 
sis experiments have never been capable of measuring the reaction rate of elemen- 
tary steps, but the overall rate of a process which usually involves several steps with 
different activation energies. Therefore the constancy of the experimentally deter- 
mined value of Ea should be expected rather as an anomaly indicating that a single 
reaction step is likely to determine the rate of the whole process. Generally we have 
to put up with the fact that Ea may vary with a. The analysis of the dependence of 
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E~ on tz is very instructive because it helps not only to disclose the complexity of a 
process but also to gain an insight into its mechanism [3, 4]. It is also noteworthy 
that the sole dependence of the activation energy on conversion is sufficient to pre- 
dict reliably the kinetics of a process over a wide region of the temperatures [3-5]. 
A possibility to obtain information about the mechanism of a process and to predict 
its kinetics without the knowledge of both the reaction model and the preexponen- 
tial factor gives rise to an alternative concept [3, 6] of the kinetic analysis. Note, 
that the preexponential factor can, however, be evaluated independently of the reac- 
tion model using parameters of a false isokinetic relationship [7]. Once the values 
of the activation energy and the preexponential factor have been determined, the re- 
action model can be reconstructed [3]. 

All these compelling advantages of the isoconversional method have stimulated 
our efforts to further extend the capabilities of the method. This paper describes a 
non-linear algorithm which markedly increases the accuracy of evaluating the acti- 
vation energy by the isoconversional method. A minor modification of the algo- 
rithm allowed us to develop the' advanced isoconversional method which is applica- 
ble to an arbitrary variation in the temperature. 

Non-linear isoconversional method 

Integral isoconversional methods are based on the kinetic Eq. (1) 

T 

g(oO = ( A ~ I ~ e x p ( - E / R T ) d T  = (A/~)I (E,T)  
o 

(1) 

where g(a )  is the integral form of the reaction model, A is the preexponential fac- 
tor, E is the activation energy, R is the gas constant, T is the temperature, [3 is the 
heating rate. The temperature integral in Eq. (1) is replaced by an approximation to 
derive a linear equation to evaluate the activation energy. Equation (1) is usually 
represented in the form (2) [8, 9] 

g(a) = (aEglR)p(x) (2) 

where x = E / R T  andp(x) is an approximation of the temperature integral. The gen- 
eralized Eq. (3) [10] 

p(x)  = exp(- x)/x2[(1 - 2/x)(1 - ra/x2)] (3) 

combines several previously suggested approximations (m is a parameter specifying 
a given approximation). Combining Eqs (2 and 3) one can obtain Eq. (4) 

lnC[~i/T~,i) = ln{[A,R/EagCa)][(l  - 2/x)/(1 - m/x2)]} - Ea/RTa, i (4) 

(the subscript ct designates values related to a given value of the extent of conver- 
sion) which is practically linear with respect to T~] at x > 10 and thus allows Ea to 

2 1 be found from the slope of the plot of ln([~i/Td,i) vs. T~..i. Generally, the use of this 
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plot means that the part (1 -2 / x ) / (1 . -m /x  2) of the approximation (4) is neglected, giv- 
ing rise to an oversimplified approximation (5) 

p(x)  = exp(-x)/x 2 ( S) 

As an alternative to approximate linear equations an exact non-linear equation 
can be derived. Using a general assumption [1, 2] that the reaction model is inde- 
pendent of the heating rate, we can write for a given a and a set of experiments per- 
formed under different heating rates, [~i (i = l . . . . .  n) Eq. (6) 

(AaOx) l (Ea ,Ta ,  1) = (Atx/~2)I(Ea,T,,,2) = ... = (Aa/~n)l(Ea,Ta,n) (6) 

It can be shown [11] that Eq. (6) is equivalent to the condition of minimum (7) 

1'1 n 

The non-linear Eq. (7) can be used to obtain E~. Substituting experimental values 
of T~ and ~ into Eq. (7) and varying E~ to reach the minimum gives the value of 
the activation energy at a given conversion. The values of I (E ,T )  may be found by 
numerical integration as well as with the help of an accurate approximation. In our 
calculations we have used the Senum-Yang approximation [12] 

p(x)  = e x p ( - x ) / x  (x 2 + 10x + 18)/(x 3 + 12x 2 + 36x + 24) (8) 

which at x=5  gives only 0.02% deviation from the exact value of the temperature 
integral [12]. 

Equations (4) and (7) have been compared by model data simulated for a wide 
variation of x [11]. Figure 1 shows relative deviations of the computed activation 
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Fig, 1 Relative error in the activation energy computed by the linear Eq. (4) (squares) and 
non-linear Eq. (7) (circles) 
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energy from the exact value as a function of the x value. The linear Eq. (4) demon- 
strates increasing deviation with decreasing x. The non-linear Eq. (7) reveals ex- 
tremely low errors (<0.1%) in the activation energy, and virtually shows no de- 
pendence of 18EJE=I on x. Therefore, non-linear Eq. (7) can be employed to in- 
crease markedly the accuracy of evaluating the activation energy by the isoconver- 
sional method. 

Advanced isoconversional method 

Whatever the prescribed heating program is, the actual variation of the tempera- 
ture inside the reaction system tends to deviate from that prescribed, primarily due 
to the thermal effects of the reactions. Experimental measurements performed on 
CaC204.H20 and on a mixture of CaCO3 with Ca(OH)2 have shown [13] that the 
endothermic effects of the thermal decomposition of these substances make the ac- 
tual sample temperature deviate from the prescribed linear program by as much as 
10 K. Such deviations obviously affect the reaction kinetics as well as invalidate the 
use of equations based on the assumption that a prescribed heating program holds. 
Therefore, if integrating Eq. (2) does not account for the actual variation of the 
temperature, the difference between the prescribed and actual temperature will in- 
evitably result in erroneous values of computed Arrhenius parameters. 

Although Eq. (7) underlying the non-linear isoconversional method only holds 
for a linear heating program, it can be adapted to an arbitrary variation of the tem- 
perature. Let us introduce a function 

t 

J[E,T(t)] = Iexp[-E/RT(t)]dt 
0 

(9) 

Assuming that the reaction model, g(ct), is independent of the variation of the 
temperature, we can write Eq. (10) by analogy with Eq. (7) 

n n 

Z ~ J[ Ea'Ti(tQ] / J[E~,Tj(tQ] = min 
i j~i 

(10) 

where Ti(t) (i=1 ..... n) are actual variations of the temperature. Substituting the 
time, t=, for which a given conversion has been reached and the actual temperature 
at that moment, into (10) and varying E= until the minimum is attained gives an 
estimate of the activation energy. Details of numerical algorithm to solve Eq. (10) 
can be found elsewhere [14]. 

Equation (10) has been tested by model data on a first order reaction (E= 
125.4 kJ mol -z and A---10 I~ rain -1) proceeding at a linear variation of the tempera- 
ture complicated by non-linear deviations 

Ti(t) = T o + ~i t + 8TO(To + ~it) (11) 
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where 8T is the maximum deviation from the prescribed temperature. The non-lin- 
ear deviation has been assumed to follow the Gaussian function 

O(T) = (a/w)(Tc/ '2)- l /2exp{-2[(T-  Zm)/W2] 1/2} (12) 

In Eq. (12), Tm is the temperature corresponding to a maximum deviation of the 
actual temperature from a prescribed program. The values of T m were taken equal 
to the temperatures at which d ~ / d T  is maximum under linear heating. Parameters 
w and a were respectively set as 10 and 12.6 so that the amplitude, O(Tm) was about 
1 and width, Tf--T i was about 30 K (the initial Ti and final Tf temperatures are de- 
fined as O(Ti) and O(Tf) " 0.1 K). The temperature has been varied, by Eq. (11), 
at five 5T values of 0, _+5, and +10 K. For each ST, the data have been simulated at 
(13 i = 8, 12, and 16 K rain -1. Equation (13) 

tx = 1 - e xp{ -J [E ,  Ti(t)] } (13) 

has been used to find the values of t, T, and ix. The integrals in Eqs (10) and (13) 
have been computed by Simpson's rule. 

The model data have been processed by Eqs (7) and (10). The results of compu- 
tations by Eq. (7) which does not account for the actual variation of the temperature 
are presented in Fig. 2, Since the data have been simulated for a single-step reac- 
tion, the computed values of the activation energy must be constant throughout the 
entire interval of conversions. The results, however, clearly demonstrate a system- 
atic dependence of Ea on ix. The occurrence of such a dependence could be inter- 
preted in terms of complex reaction mechanisms [3]. The present example shows 
that an adequate mechanistic interpretation of the dependence of Ea on cz is allow- 
able only if a prescribed program has been obeyed. Otherwise the interpretation is 
problematic because both factors, temperature deviations and complex kinetics, 
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Fig. 2 The activation energy computed by F.xt. (7) for the simulated process at the variations 
of the temperature (Eq. (11)) with different values ~T (circles: ST=0; open squares: 
ST= +5; solid squares: 8T=-5; open triangles: ~T= + 10; solid triangles: 6T=-I0) 
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manifest themselves as a dependence of Ea on ct. This means that temperature de- 
viations may disguise the potential complexity of a process. 

Figure 3 shows the results of data processing by Eq. (10) which holds for an ar- 
bitrary variation of the temperature. It is ira.mediately apparent that the results of 
computations are entirely independent of the 5T value. All the values of Ea are clus- 
tered around 125,4 kJ tool -1 which was used to simulate the data. Extreme devia- 
tions do not exceed 2% of this value, amounting on average about 0.7%. Because 
the value of 5T does not influence the deviations in the activation energy, they 
should be attributed to the computational features of the method and most likely to 
Simpson's rule used for numerical integration. 
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Fig. 3 The activation energy computed by Eq. (10) for the simulated process at the vari- 
ations of the temperature (Eq. (11)) with different values of 8T (see notations to 
Fig. 2) 

Conclusions 

The considered non-linear algorithm has been shown to increase the accuracy of 
evaluating the activation energy computed by isoconversional method. The algo- 
rithm has been modified to adapt the isoconversional method to an arbitrary vari- 
ation of the temperature. The resulting advanced isoconversional method allows for 
trustworthy estimates of the activation energy in reaction systems whose kinetics 
are affected by arbkrary variations of the temperature due to the thermal effects. 
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